The classification of nonsingular multidimensional Dubrovin–Novikov brackets
نویسنده
چکیده
In this paper the well-known Dubrovin–Novikov problem posed as long ago as 1984 in connection with the Hamiltonian theory of systems of hydrodynamic type, namely, the classification problem for multidimensional Poisson brackets of hydrodynamic type, is solved. In contrast to the one-dimensional case, in the general case, a nondegenerate multidimensional Poisson bracket of hydrodynamic type cannot be reduced to a constant form by a local change of coordinates. Generally speaking, such a Poisson bracket is generated by a nontrivial special infinite-dimensional Lie algebra. In this paper we obtain a classification of all nonsingular nondegenerate multidimensional Poisson brackets of hydrodynamic type for any number N of components and for any dimension n by differential-geometric methods. A key role in the solution of this problem was played by the theory of compatible metrics that had been earlier constructed by the present author. The research was supported by the Max-Planck-Institut für Mathematik (Bonn, Germany), the Russian Science Support Foundation, the Russian Foundation for Basic Research (grants Nos. 0301-00782 and 05-01-00170), and the Program of Support for Leading Scientific Schools (grant No. NSh-4182.2006.1).
منابع مشابه
Compatible metrics of constant Riemannian curvature: local geometry, nonlinear equations and integrability
In the present paper, the nonlinear equations describing all the nonsingular pencils of metrics of constant Riemannian curvature are derived and the integrability of these nonlinear equations by the method of inverse scattering problem is proved. These results were announced in our previous paper [1]. For the flat pencils of metrics the corresponding statements and proofs were presented in the ...
متن کاملCompatible nonlocal Poisson brackets
In the present work, the integrable bi-Hamiltonian hierarchies related to compatible nonlocal Poisson brackets of hydrodynamic type are effectively constructed. For achieving this aim, first of all, the problem on the canonical form of a special type for compatible nonlocal Poisson brackets of hydrodynamic type is solved. The compatible pairs of nonlocal Poisson brackets of hydrodynamic type ha...
متن کاملAlgebro-geometric Poisson Brackets for Real Finite-zone Solutions of the Sine-gordon Equation and the Nonlinear Schrödinger Equation
Algebro-geometric Poisson brackets for real, finite-zone solutions of the Korteweg–de Vries (KdV) equation were studied in [1]. The transfer of this theory to the Toda lattice and the sinh-Gordon equation is more or less obvious. The complex part of the finite-zone theory for the nonlinear Schrödinger equation (NS) and the sine-Gordon equation (SG) is analogous to KdV, but conditions that solut...
متن کاملLiouville canonical form for compatible nonlocal Poisson brackets of hydrodynamic type, and integrable hierarchies
In the present paper, we solve the problem of reducing to the simplest and convenient for our purposes, “canonical” form for an arbitrary pair of compatible nonlocal Poisson brackets of hydrodynamic type generated by metrics of constant Riemannian curvature (compatible Mokhov–Ferapontov brackets [1]) in order to get an effective construction of the integrable hierarchies related to all these co...
متن کاملCompatible Dubrovin–Novikov Hamiltonian operators, Lie derivative and integrable systems of hydrodynamic type
1 (Dubrovin–Novikov Hamiltonian operator [1]) is compatible with a nondegenerate local Hamiltonian operator of hydrodynamic type K 2 if and only if the operator K 1 is locally the Lie derivative of the operator K 2 along a vector field in the corresponding domain of local coordinates. This result gives, first of all, a convenient general invariant criterion of the compatibility for the Dubrovin...
متن کامل